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P. M. Prenter [1, pp. 341-351] showed that if H is a real separable Hilbert
space and K is a compact subset of H, then the polynomial operators of
finite rank are dense in C(K; H) in the uniform norm. Later as a conse­
quence of more general considerations, Prolla and Machado
[2, pp. 247-258] proved that if E and F are real locally convex Hausdorff
spaces, then the polynomial operators of finite type are dense in C{E; F)
equipped with the compact-open topology. In this paper we modify Prenter's
approach to obtain a Weierstrass theorem when E and F are not necessarily
convex.

Before stating the main theorem let us make the following definition: A
sequence of linear operators (tn) on a topological vector space has the
Grothendieck approximation propety if and only if (1) each tn has finite rank,
(2) the sequence (tn) is equicontinuous, and (3) the sequence (tn) converges
uniformly on compact subsets to the identity operator of the space
[3, pp. 108-115]. For example, in a complete linear metric space with a
Schauder basis (en)' the sequence of projections

CD n

tn: L akek 1---+ L akek
k= I k= I

has the Grothendieck approximation property [3, p. 115].

THEOREM. Let E and F be real Hausdorff topological vector spaces.
Suppose E has a sequence (sn) ofprojections with the Grothendieck approx­
imation property and suppose F has a sequence (tn) with the Grothendieck
approximation property. Then the polynomials from E into F offinite rank
are dense in C{E; F) in the compact-open topology.
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As we have noted above, the theorem holds for complete linear metric
spaces with Schauder bases. For example, let (Pn) be a sequence of real
numbers satisfying 0 < Pn ~ I and define

(S is the vector space of all real sequences). Then with the natural metric

00

d(x,y)= L IXn-YnI Pn

n=l

I(P n) is a complete linear metric space with a Schauder basis (4). The spaces
I(Pn) (for different real sequences (Pn)' 0 < Pn~ I) are not usually locally
convex [4, p. 429].

The proof of the theorem is a consequence of the following three lemmas.
Here E and F are as above, f: E -+ F is a continuous map, and K is a
compact subset of E.

LEMMA 1. The sequence (fsn) converges uniformly to f on K.

Proof This follows from the uniform continuity of f on K and the
assumption that (sn) converges uniformly to the identity of Eon K.

For a continuous f: E -+ F we define fn = tnfsn' We have

LEMMA 2. For any neighborhood U of zero in F there is a continuous
Rolynomial P: E -+ F offinite rank such that fn x - Px E U for all x E K.

Proof Since E and F are Hausdorff TVSs and Sn and tn are of finite
rank, sn(E) and tn(F) are linearly homeomorphic to finite dimensional
Euclidean spaces. Since sn(K) is compact, the classical Weierstrass theorem
for Euclidean spaces applied to the restriction in of fn to sn(E) implies there
exists a polynomial P: sn(E) -+ tn(F) such that inx - PX E U for all
x E sn(K). We define an extension P of P to E by Px = Psnx. Clearly P is a
continuously polynomial of finite rank. If x E K, then fnx - Px = fnsnx­

Psnx E U.

LEMMA 3. The sequence (fn) converges uniformly to f on K.

Proof If U is any neighborhood of zero in F, let V be a neighborhood of
zero such that V + V S; U. Since the sequence (tn) is equicontinuous, there is
a neighborhood of zero Win E such that tn(W) S; V for all n. By Lemma I
there is an integer n. ~ 0 such thatfsnx - fx E W for all n ~ n\ and x E K.
Finally, since the sequence (t n ) converges uniformly on K to the identity of
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F, there is an integer n2 ~ 0 such that tnlx - fx E V for all n ~ n2 and
x E K. Hence for all n ~ max(n[ nz) and x E K

fnx - fx = tn(fsn x - fx) + tnlx - fx

~ tn(W) + V~ U.

The theorem clearly follows from Lemmas 2 and 3.
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