A Weierstrass Approximation Theorem for Topological Vector Spaces

VINCENT J. BRUNO

Department of Mathematics, San Francisco State University, San Francisco, California 94132, U.S.A.

Communicated by Oved Shisha

Received February 19, 1979; revised March 12, 1984

P. M. Prenter [1, pp. 341–351] showed that if H is a real separable Hilbert space and K is a compact subset of H, then the polynomial operators of finite rank are dense in C(K; H) in the uniform norm. Later as a consequence of more general considerations, Prolla and Machado [2, pp. 247–258] proved that if E and F are real locally convex Hausdorff spaces, then the polynomial operators of finite type are dense in C(E; F) equipped with the compact-open topology. In this paper we modify Prenter's approach to obtain a Weierstrass theorem when E and F are not necessarily convex.

Before stating the main theorem let us make the following definition: A sequence of linear operators (t_n) on a topological vector space has the *Grothendieck approximation propety* if and only if (1) each t_n has finite rank, (2) the sequence (t_n) is equicontinuous, and (3) the sequence (t_n) converges uniformly on compact subsets to the identity operator of the space [3, pp. 108–115]. For example, in a complete linear metric space with a Schauder basis (e_n) , the sequence of projections

$$t_n: \sum_{k=1}^{\infty} a_k e_k \mapsto \sum_{k=1}^n a_k e_k$$

has the Grothendieck approximation property [3, p. 115].

THEOREM. Let E and F be real Hausdorff topological vector spaces. Suppose E has a sequence (s_n) of projections with the Grothendieck approximation property and suppose F has a sequence (t_n) with the Grothendieck approximation property. Then the polynomials from E into F of finite rank are dense in C(E; F) in the compact-open topology. As we have noted above, the theorem holds for complete linear metric spaces with Schauder bases. For example, let (p_n) be a sequence of real numbers satisfying $0 < p_n \leq 1$ and define

$$l(p_n) = \left\{ x \in s: \sum_{n=1}^{\infty} |x_n|^{p_n} < \infty \right\}$$

(s is the vector space of all real sequences). Then with the natural metric

$$d(x, y) = \sum_{n=1}^{\infty} |x_n - y_n|^{p_n}$$

 $l(p_n)$ is a complete linear metric space with a Schauder basis (4). The spaces $l(p_n)$ (for different real sequences (p_n) , $0 < p_n \le 1$) are not usually locally convex [4, p. 429].

The proof of the theorem is a consequence of the following three lemmas. Here E and F are as above, $f: E \to F$ is a continuous map, and K is a compact subset of E.

LEMMA 1. The sequence (fs_n) converges uniformly to f on K.

Proof. This follows from the uniform continuity of f on K and the assumption that (s_n) converges uniformly to the identity of E on K. For a continuous $f: E \to F$ we define $f_n = t_n f s_n$. We have

LEMMA 2. For any neighborhood U of zero in F there is a continuous polynomial P: $E \to F$ of finite rank such that $f_n x - Px \in U$ for all $x \in K$.

Proof. Since E and F are Hausdorff TVSs and s_n and t_n are of finite rank, $s_n(E)$ and $t_n(F)$ are linearly homeomorphic to finite dimensional Euclidean spaces. Since $s_n(K)$ is compact, the classical Weierstrass theorem for Euclidean spaces applied to the restriction \hat{f}_n of f_n to $s_n(E)$ implies there exists a polynomial $\hat{P}: s_n(E) \to t_n(F)$ such that $\hat{f}_n x - \hat{P}x \in U$ for all $x \in s_n(K)$. We define an extension P of \hat{P} to E by $Px = \hat{P}s_n x$. Clearly P is a continuously polynomial of finite rank. If $x \in K$, then $f_n x - Px = f_n s_n x - \hat{P}s_n x \in U$.

LEMMA 3. The sequence (f_n) converges uniformly to f on K.

Proof. If U is any neighborhood of zero in F, let V be a neighborhood of zero such that $V + V \subseteq U$. Since the sequence (t_n) is equicontinuous, there is a neighborhood of zero W in E such that $t_n(W) \subseteq V$ for all n. By Lemma 1 there is an integer $n_1 \ge 0$ such that $fs_n x - fx \in W$ for all $n \ge n_1$ and $x \in K$. Finally, since the sequence (t_n) converges uniformly on K to the identity of

F, there is an integer $n_2 \ge 0$ such that $t_n fx - fx \in V$ for all $n \ge n_2$ and $x \in K$. Hence for all $n \ge \max(n_1 n_2)$ and $x \in K$

$$f_n x - fx = t_n (fs_n x - fx) + t_n fx - fx$$
$$\subseteq t_n(W) + V \subseteq U.$$

The theorem clearly follows from Lemmas 2 and 3.

References

- 1. P. M. PRENTER, A Weierstrass theorem for real separable Hilbert spaces, J. Approx. Theory 3 (1970), 419-432.
- 2. J. B. PROLLA AND S. MACHADO, Weighted Grothendieck subspaces, Trans. Amer. Math. Soc. 186 (1973), 247-258.
- 3. H. H. SCHAEFFER, "Topological Vector Spaces," Springer-Verlag, Berlin, 1971.
- 4. S. SIMONS, The sequence spaces $l(p_r)$ and $m(p_r)$, Proc. London Math. Soc. (3) 15 (1965), 422-436.